Pattern formation in the FitzHugh–Nagumo model

In this paper, we investigate the effect of diffusion on pattern formation in FitzHugh–Nagumo model. Through the linear stability analysis of local equilibrium we obtain the condition how the Turing bifurcation, Hopf bifurcation and the oscillatory instability boundaries arise. By using the method o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2015-09, Vol.70 (5), p.1082-1097
Hauptverfasser: Zheng, Qianqian, Shen, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the effect of diffusion on pattern formation in FitzHugh–Nagumo model. Through the linear stability analysis of local equilibrium we obtain the condition how the Turing bifurcation, Hopf bifurcation and the oscillatory instability boundaries arise. By using the method of the weak nonlinear multiple scales analysis and Taylor series expansion, we derive the amplitude equations of the stationary patterns. The analysis of amplitude equations shows the occurrence of different complex phenomena, including Turing instability Eckhaus instability and zigzag instability. In addition, we apply this analysis to FitzHugh–Nagumo model and find that this model has very rich dynamical behaviors, such as spotted, stripe and hexagon patterns. Finally, the numerical simulation shows that the analytical results agree with numerical simulation.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2015.06.031