Kalman Filter Sensor Fusion for Mecanum Wheeled Automated Guided Vehicle Localization

The Mecanum automated guided vehicle (AGV), which can move in any direction by using a special wheel structure with a LIM-wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method for Mecanum AGV localization has certain limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2015-01, Vol.2015 (2015), p.1-7
Hauptverfasser: Yoon, Sang Won, Kim, Jong Shik, Park, Seong-Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mecanum automated guided vehicle (AGV), which can move in any direction by using a special wheel structure with a LIM-wheel and a diagonally positioned roller, holds considerable promise for the field of industrial electronics. A conventional method for Mecanum AGV localization has certain limitations, such as slip phenomena, because there are variations in the surface of the road and ground friction. Therefore, precise localization is a very important issue for the inevitable slip phenomenon situation. So a sensor fusion technique is developed to cope with this drawback by using the Kalman filter. ENCODER and StarGazer were used for sensor fusion. StarGazer is a position sensor for an image recognition device and always generates some errors due to the limitations of the image recognition device. ENCODER has also errors accumulating over time. On the other hand, there are no moving errors. In this study, we developed a Mecanum AGV prototype system and showed by simulation that we can eliminate the disadvantages of each sensor. We obtained the precise localization of the Mecanum AGV in a slip phenomenon situation via sensor fusion using a Kalman filter.
ISSN:1687-725X
1687-7268
DOI:10.1155/2015/347379