Calculation of the ortho–para conversion of hydrogen in a p –type silicon lattice using a dwell time approach

Quantitative spectroscopic studies of hydrogen in a p–type silicon lattice at room temperature and at reduced temperature have led to rates for the ortho-para conversion process. The characteristic relaxation time at room temperature is about 8 hours. Explanations of this rate on the basis of the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.397 (1), p.12064-5
Hauptverfasser: Herman, R M, Suarez, A, Sofo, J, Lewis, J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative spectroscopic studies of hydrogen in a p–type silicon lattice at room temperature and at reduced temperature have led to rates for the ortho-para conversion process. The characteristic relaxation time at room temperature is about 8 hours. Explanations of this rate on the basis of the interaction between the interstitial H2 and naturally occurring 29Si using the Wigner rate expression encounter several difficulties, the principal being that the decay would involve multiexponential decay, in contradiction to observation. In an earlier work we calculated the rate assuming that the ortho–para conversion was effected during scattering of holes from the hydrogen molecules. The result was smaller than observed by several orders of magnitude. In the present work it is assumed that spz holes diffuse randomly throughout the Si lattice, dwelling on effective areas associated with spz sites. The transition matrix elements are the same as for the scattering mechanism. The resultant characteristic time at room temperature we find to be 1000 hr. Considering the uncertainties in the calculation the discrepancy between our result and observation is not sufficient as to negate our physical picture.
ISSN:1742-6588
1742-6596
DOI:10.1088/1742-6596/397/1/012064