Extreme point inequalities and geometry of the rank sparsity ball

We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l 1 norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2015-08, Vol.152 (1-2), p.521-544
Hauptverfasser: Drusvyatskiy, D., Vavasis, S. A., Wolkowicz, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l 1 norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0795-8