Extreme point inequalities and geometry of the rank sparsity ball
We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the l 1 norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general c...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2015-08, Vol.152 (1-2), p.521-544 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate geometric features of the unit ball corresponding to the sum of the nuclear norm of a matrix and the
l
1
norm of its entries—a common penalty function encouraging joint low rank and high sparsity. As a byproduct of this effort, we develop a calculus (or algebra) of faces for general convex functions, yielding a simple and unified approach for deriving inequalities balancing the various features of the optimization problem at hand, at the extreme points of the solution set. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-014-0795-8 |