On the dimension of graphs of Weierstrass-type functions with rapidly growing frequencies
We determine the Hausdorff and box dimension of the fractal graphs of some Weierstrass-type functions of the form (ProQuest: Formulae and/or non-USASCII text omitted), where g is a periodic Lipschitz real function and a sub()n1a sub()n arrow right 0, b sub()n1b sub()n arrow right [infinity] as n arr...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2012-01, Vol.25 (1), p.193-209 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine the Hausdorff and box dimension of the fractal graphs of some Weierstrass-type functions of the form (ProQuest: Formulae and/or non-USASCII text omitted), where g is a periodic Lipschitz real function and a sub()n1a sub()n arrow right 0, b sub()n1b sub()n arrow right [infinity] as n arrow right [infinity]. Moreover, for any 1 [< or =, slant] H [< or =, slant] B [< or =, slant] 2 we provide examples of such functions with dim sub()H(graph [functionof]) = dim sub(B)(graph [functionof]) = H, dim sub(B)(graph [functionof]) = B. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/25/1/193 |