On the Reduced Noise Sensitivity of a New Fourier Transformation Algorithm

In this study, a new inversion method is presented for performing one-dimensional Fourier transform, which shows highly robust behavior against noises. As the Fourier transformation is linear, the data noise is also transformed to the frequency domain making the operation noise sensitive especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2015-08, Vol.47 (6), p.679-697
Hauptverfasser: Dobróka, Mihály, Szegedi, Hajnalka, Molnár, Judit Somogyi, Szűcs, Péter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a new inversion method is presented for performing one-dimensional Fourier transform, which shows highly robust behavior against noises. As the Fourier transformation is linear, the data noise is also transformed to the frequency domain making the operation noise sensitive especially in case of non-Gaussian noise distribution. In the field of inverse problem theory it is well known that there are numerous procedures for noise rejection, so if the Fourier transformation is formulated as an inverse problem these tools can be used to reduce the noise sensitivity. It was demonstrated in many case studies that the method of most frequent value provides useful weights to increase the noise rejection capability of geophysical inversion methods. Following the basis of the latter method the Fourier transform is formulated as an iteratively reweighted least squares problem using Steiner’s weights. Series expansion was applied to the discretization of the continuous functions of the complex spectrum. It is shown that the Jacobian matrix of the inverse problem can be calculated as the inverse Fourier transform of the basis functions used in the series expansion. To avoid the calculation of the complex integral a set of basis functions being eigenfunctions of the inverse Fourier transform is produced. This procedure leads to the modified Hermite functions and results in quick and robust inversion-based Fourier transformation method. The numerical tests of the procedure show that the noise sensitivity can be reduced around an order of magnitude compared to the traditional discrete Fourier transform.
ISSN:1874-8961
1874-8953
DOI:10.1007/s11004-014-9570-x