Observer and Command-Filter-Based Adaptive Fuzzy Output Feedback Control of Uncertain Nonlinear Systems
In this paper, observer and command-filter-based adaptive fuzzy output feedback control is proposed for a class of strict-feedback systems with parametric uncertainties and unmeasured states. First, fuzzy logic systems are used to approximate the unknown and nonlinear functions. Next, a fuzzy state...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2015-09, Vol.62 (9), p.5962-5970 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, observer and command-filter-based adaptive fuzzy output feedback control is proposed for a class of strict-feedback systems with parametric uncertainties and unmeasured states. First, fuzzy logic systems are used to approximate the unknown and nonlinear functions. Next, a fuzzy state observer is developed to estimate the immeasurable states. Then, command-filtered backstepping control is designed to avoid the explosion of complexity in the backstepping design, and compensating signals are introduced to remove the effect of the errors caused by command filters. The proposed method guarantees that all signals in the closed-loop systems are bounded. The main contributions of this paper are the proposed control method can overcome two problems of linear in the unknown system parameter and explosion of complexity in backstepping-design methods and it does not require that all of the states of the system are measured directly. Finally, two examples are provided to illustrate its effectiveness. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2015.2418317 |