Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids

This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the reven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2015-11, Vol.30 (6), p.3139-3149
Hauptverfasser: Wang, Zhaoyu, Wang, Jianhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3149
container_issue 6
container_start_page 3139
container_title IEEE transactions on power systems
container_volume 30
creator Wang, Zhaoyu
Wang, Jianhui
description This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the revenues. A rolling-horizon optimization method is used to schedule the outputs of dispatchable DGs based on forecasts. In the self-healing mode, the on-outage portion of the distribution system will be optimally sectionalized into networked self-supplied microgrids (MGs) so as to provide reliable power supply to the maximum loads continuously. The outputs of the dispatchable DGs will be rescheduled accordingly too. In order to take into account the uncertainties of DG outputs and load consumptions, we formulate the problems as a stochastic program. A scenario reduction method is applied to achieve a tradeoff between the accuracy of the solution and the computational burden. A modified IEEE 123-node distribution system is used as a test system. The results of case studies demonstrate the effectiveness of the proposed methodology.
doi_str_mv 10.1109/TPWRS.2015.2389753
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1730058134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7017458</ieee_id><sourcerecordid>1730058134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-eb24be32eac63e4a4e82c189df75bdc11fab989b92fac0f22e7005df9a77f2023</originalsourceid><addsrcrecordid>eNpdkU9P4zAQxa0VK23p8gWWSwQXLiljO67tI_9BYrWIgvZoOc4YjNIEYvdQPj1OizhwGmnm92bm6RHyh8KMUtDHD3f_7xczBlTMGFdaCv6DTKgQqoS51DtkAkqJUmkBv8hujC8AMM-DCXlcYOvLa7Rt6J6Ke4yhDdil4jzENIR6lULfFYt1TLiMxamN2BRjA904yKJ3uyFuutQXf4Mb-qchNPE3-eltG3Hvs07J4-XFw9l1efvv6ubs5LZ0oqpSiTWrauQMrZtzrGyFijmqdOOlqBtHqbe1VrrWzFsHnjGUAKLx2krpGTA-JQfbvX1MwUQXErpn13dd_s9QxqWmkKGjLfQ69G8rjMksQ3TYtrbDfhUNlTxvVZRXGT38hr70qyH7HClgUopqc5VtqWw3xgG9eR3C0g5rQ8GMcZhNHGaMw3zGkUX7W1FAxC-BBCorofgH2cSG_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702775402</pqid></control><display><type>article</type><title>Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids</title><source>IEEE/IET Electronic Library</source><creator>Wang, Zhaoyu ; Wang, Jianhui</creator><creatorcontrib>Wang, Zhaoyu ; Wang, Jianhui ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the revenues. A rolling-horizon optimization method is used to schedule the outputs of dispatchable DGs based on forecasts. In the self-healing mode, the on-outage portion of the distribution system will be optimally sectionalized into networked self-supplied microgrids (MGs) so as to provide reliable power supply to the maximum loads continuously. The outputs of the dispatchable DGs will be rescheduled accordingly too. In order to take into account the uncertainties of DG outputs and load consumptions, we formulate the problems as a stochastic program. A scenario reduction method is applied to achieve a tradeoff between the accuracy of the solution and the computational burden. A modified IEEE 123-node distribution system is used as a test system. The results of case studies demonstrate the effectiveness of the proposed methodology.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2015.2389753</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Case studies ; Consumption ; Control systems ; Distributed power generation ; Electric power grids ; Electric utilities ; Generators ; microgrid (MG) ; Microgrids ; Optimization ; Power distribution ; Power distribution faults ; Power system reliability ; Reduction ; Revenues ; Schedules ; Self-healing ; Stochastic Optimization ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2015-11, Vol.30 (6), p.3139-3149</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-eb24be32eac63e4a4e82c189df75bdc11fab989b92fac0f22e7005df9a77f2023</citedby><cites>FETCH-LOGICAL-c544t-eb24be32eac63e4a4e82c189df75bdc11fab989b92fac0f22e7005df9a77f2023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7017458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7017458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1237910$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhaoyu</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the revenues. A rolling-horizon optimization method is used to schedule the outputs of dispatchable DGs based on forecasts. In the self-healing mode, the on-outage portion of the distribution system will be optimally sectionalized into networked self-supplied microgrids (MGs) so as to provide reliable power supply to the maximum loads continuously. The outputs of the dispatchable DGs will be rescheduled accordingly too. In order to take into account the uncertainties of DG outputs and load consumptions, we formulate the problems as a stochastic program. A scenario reduction method is applied to achieve a tradeoff between the accuracy of the solution and the computational burden. A modified IEEE 123-node distribution system is used as a test system. The results of case studies demonstrate the effectiveness of the proposed methodology.</description><subject>Case studies</subject><subject>Consumption</subject><subject>Control systems</subject><subject>Distributed power generation</subject><subject>Electric power grids</subject><subject>Electric utilities</subject><subject>Generators</subject><subject>microgrid (MG)</subject><subject>Microgrids</subject><subject>Optimization</subject><subject>Power distribution</subject><subject>Power distribution faults</subject><subject>Power system reliability</subject><subject>Reduction</subject><subject>Revenues</subject><subject>Schedules</subject><subject>Self-healing</subject><subject>Stochastic Optimization</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU9P4zAQxa0VK23p8gWWSwQXLiljO67tI_9BYrWIgvZoOc4YjNIEYvdQPj1OizhwGmnm92bm6RHyh8KMUtDHD3f_7xczBlTMGFdaCv6DTKgQqoS51DtkAkqJUmkBv8hujC8AMM-DCXlcYOvLa7Rt6J6Ke4yhDdil4jzENIR6lULfFYt1TLiMxamN2BRjA904yKJ3uyFuutQXf4Mb-qchNPE3-eltG3Hvs07J4-XFw9l1efvv6ubs5LZ0oqpSiTWrauQMrZtzrGyFijmqdOOlqBtHqbe1VrrWzFsHnjGUAKLx2krpGTA-JQfbvX1MwUQXErpn13dd_s9QxqWmkKGjLfQ69G8rjMksQ3TYtrbDfhUNlTxvVZRXGT38hr70qyH7HClgUopqc5VtqWw3xgG9eR3C0g5rQ8GMcZhNHGaMw3zGkUX7W1FAxC-BBCorofgH2cSG_A</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Wang, Zhaoyu</creator><creator>Wang, Jianhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope><scope>OTOTI</scope></search><sort><creationdate>20151101</creationdate><title>Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids</title><author>Wang, Zhaoyu ; Wang, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-eb24be32eac63e4a4e82c189df75bdc11fab989b92fac0f22e7005df9a77f2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Case studies</topic><topic>Consumption</topic><topic>Control systems</topic><topic>Distributed power generation</topic><topic>Electric power grids</topic><topic>Electric utilities</topic><topic>Generators</topic><topic>microgrid (MG)</topic><topic>Microgrids</topic><topic>Optimization</topic><topic>Power distribution</topic><topic>Power distribution faults</topic><topic>Power system reliability</topic><topic>Reduction</topic><topic>Revenues</topic><topic>Schedules</topic><topic>Self-healing</topic><topic>Stochastic Optimization</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhaoyu</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Zhaoyu</au><au>Wang, Jianhui</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>30</volume><issue>6</issue><spage>3139</spage><epage>3149</epage><pages>3139-3149</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the revenues. A rolling-horizon optimization method is used to schedule the outputs of dispatchable DGs based on forecasts. In the self-healing mode, the on-outage portion of the distribution system will be optimally sectionalized into networked self-supplied microgrids (MGs) so as to provide reliable power supply to the maximum loads continuously. The outputs of the dispatchable DGs will be rescheduled accordingly too. In order to take into account the uncertainties of DG outputs and load consumptions, we formulate the problems as a stochastic program. A scenario reduction method is applied to achieve a tradeoff between the accuracy of the solution and the computational burden. A modified IEEE 123-node distribution system is used as a test system. The results of case studies demonstrate the effectiveness of the proposed methodology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2015.2389753</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2015-11, Vol.30 (6), p.3139-3149
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_1730058134
source IEEE/IET Electronic Library
subjects Case studies
Consumption
Control systems
Distributed power generation
Electric power grids
Electric utilities
Generators
microgrid (MG)
Microgrids
Optimization
Power distribution
Power distribution faults
Power system reliability
Reduction
Revenues
Schedules
Self-healing
Stochastic Optimization
Stochastic processes
Uncertainty
title Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Healing%20Resilient%20Distribution%20Systems%20Based%20on%20Sectionalization%20Into%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wang,%20Zhaoyu&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-11-01&rft.volume=30&rft.issue=6&rft.spage=3139&rft.epage=3149&rft.pages=3139-3149&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2015.2389753&rft_dat=%3Cproquest_RIE%3E1730058134%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702775402&rft_id=info:pmid/&rft_ieee_id=7017458&rfr_iscdi=true