Self-Healing Resilient Distribution Systems Based on Sectionalization Into Microgrids
This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the reven...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2015-11, Vol.30 (6), p.3139-3149 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a novel comprehensive operation and self-healing strategy for a distribution system with both dispatchable and nondispatchable distributed generators (DGs). In the normal operation mode, the control objective of the system is to minimize the operation costs and maximize the revenues. A rolling-horizon optimization method is used to schedule the outputs of dispatchable DGs based on forecasts. In the self-healing mode, the on-outage portion of the distribution system will be optimally sectionalized into networked self-supplied microgrids (MGs) so as to provide reliable power supply to the maximum loads continuously. The outputs of the dispatchable DGs will be rescheduled accordingly too. In order to take into account the uncertainties of DG outputs and load consumptions, we formulate the problems as a stochastic program. A scenario reduction method is applied to achieve a tradeoff between the accuracy of the solution and the computational burden. A modified IEEE 123-node distribution system is used as a test system. The results of case studies demonstrate the effectiveness of the proposed methodology. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2015.2389753 |