A framework of discrete DC programming by discrete convex analysis

A theoretical framework of difference of discrete convex functions (discrete DC functions) and optimization problems for discrete DC functions is established. Standard results in continuous DC theory are exported to the discrete DC theory with the use of discrete convex analysis. A discrete DC algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2015-08, Vol.152 (1-2), p.435-466
Hauptverfasser: Maehara, Takanori, Murota, Kazuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical framework of difference of discrete convex functions (discrete DC functions) and optimization problems for discrete DC functions is established. Standard results in continuous DC theory are exported to the discrete DC theory with the use of discrete convex analysis. A discrete DC algorithm, which is a discrete analogue of the continuous DC algorithm (Concave–Convex procedure in machine learning) is proposed. The algorithm contains the submodular-supermodular procedure as a special case. Exploiting the polyhedral structure of discrete convex functions, the algorithms tailored to specific types of discrete DC functions are proposed.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0792-y