Variational Inequalities Characterizing Weak Minimality in Set Optimization
We introduce the notion of weak minimizer in set optimization. Necessary and sufficient conditions in terms of scalarized variational inequalities of Stampacchia and Minty type, respectively, are proved. As an application, we obtain necessary and sufficient optimality conditions for weak efficiency...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2015-09, Vol.166 (3), p.804-824 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of weak minimizer in set optimization. Necessary and sufficient conditions in terms of scalarized variational inequalities of Stampacchia and Minty type, respectively, are proved. As an application, we obtain necessary and sufficient optimality conditions for weak efficiency of vector optimization in infinite-dimensional spaces. A Minty variational principle in this framework is proved as a corollary of our main result. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-014-0679-3 |