The Construction of Hilbert Spaces over the Non-Newtonian Field

Although there are many excellent ways to present the principle of the classical calculus, the novel presentations probably lead most naturally to the development of the non-Newtonian calculi. In this paper we introduce vector spaces over real and complex non-Newtonian field with respect to the *-ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of analysis 2014-01, Vol.2014, p.1-10
Hauptverfasser: Kadak, Uğur, Efe, Hakan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although there are many excellent ways to present the principle of the classical calculus, the novel presentations probably lead most naturally to the development of the non-Newtonian calculi. In this paper we introduce vector spaces over real and complex non-Newtonian field with respect to the *-calculus which is a branch of non-Newtonian calculus. Also we give the definitions of real and complex inner product spaces and study Hilbert spaces which are special type of normed space and complete inner product spaces in the sense of *-calculus. Furthermore, as an example of Hilbert spaces, first we introduce the non-Cartesian plane which is a nonlinear model for plane Euclidean geometry. Secondly, we give Euclidean, unitary, and sequence spaces via corresponding norms which are induced by an inner product. Finally, by using the *-norm properties of complex structures, we examine Cauchy-Schwarz and triangle inequalities.
ISSN:2314-498X
2314-4998
DOI:10.1155/2014/746059