Dietary isoflavone daidzein promotes Tfam expression that increases mitochondrial biogenesis in C2C12 muscle cells

Mitochondrial dysfunction in muscles leads to a wide range of metabolic and age-related disorders. Recently, it has been reported that a natural polyphenol, resveratrol, affects mitochondrial biogenesis. This study aimed to identify other natural polyphenolic compounds that regulate mitochondrial bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutritional biochemistry 2015-11, Vol.26 (11), p.1193-1199
Hauptverfasser: Yoshino, Makiko, Naka, Ayano, Sakamoto, Yuri, Shibasaki, Ayako, Toh, Mariko, Tsukamoto, Sakuka, Kondo, Kazuo, Iida, Kaoruko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitochondrial dysfunction in muscles leads to a wide range of metabolic and age-related disorders. Recently, it has been reported that a natural polyphenol, resveratrol, affects mitochondrial biogenesis. This study aimed to identify other natural polyphenolic compounds that regulate mitochondrial biogenesis in muscles. For this purpose, we used the C2C12 murine muscle cell line. Screening involved a reporter assay based on the promoter of mitochondrial transcription factor A (Tfam). We found that several polyphenols exhibited the ability to increase Tfam promoter activity and that the soy isoflavone daidzein was a most potent candidate that regulated mitochondrial biogenesis. When C2C12 myotubes were treated with 25–50μM daidzein for 24h, there were significant increases in the expression of Tfam and mitochondrial genes such as COX1 and Cytb as well as the mitochondrial content. Using several mutant Tfam promoter fragments, we found that the transcription factor, nuclear respiratory factor (NRF) and its coactivator, PGC1α, were necessary for the effect of daidzein on Tfam expression. Finally, silencing of sirtuin-1 (SIRT1) by shRNA resulted in inhibition of the daidzein effects on mitochondrial gene expression. In conclusion, daidzein regulates mitochondrial biogenesis in muscle cells by regulating transcriptional networks through a SIRT1-associated pathway. These results suggest that daidzein would be beneficial to protect against a wide range of diseases caused by muscle mitochondrial dysfunction.
ISSN:0955-2863
1873-4847
DOI:10.1016/j.jnutbio.2015.05.010