Structural Distortion of Molybdenum-Doped Manganese Oxide Octahedral Molecular Sieves for Enhanced Catalytic Performance
Due to the excellent catalytic performance of manganese oxide (K-OMS-2) in a wide range of applications, incorporation of various dopants has been commonly applied for K-OMS-2 to acquire additional functionality or activities. However, the understanding of its substitution mechanism with respect to...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2015-11, Vol.54 (21), p.10163-10171 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the excellent catalytic performance of manganese oxide (K-OMS-2) in a wide range of applications, incorporation of various dopants has been commonly applied for K-OMS-2 to acquire additional functionality or activities. However, the understanding of its substitution mechanism with respect to the catalytic performance of doped K-OMS-2 materials remains unclear. Here we present the structural distortion (from tetragonal to monoclinic cell) and morphological evolution in K-OMS-2 materials by doping hexavalent molybdenum. With a Mo-to-Mn ratio of 1:20 (R-1:20) in the preparation, the resultant monoclinic K-OMS-2 shows a small equidimensional particle size (∼15 nm), a high surface area of 213 m2g–1, and greatly improved catalytic activity toward CO oxidation with lower onset temperatures (40 °C) than that of pristine K-OMS-2 (above 130 °C). HR-TEM analyses reveal direct evidence of structural distortion on the cross-section of 2 × 2 tunnels with the absence of 4-fold rotation symmetry expected for a tetragonal cell, which are indexed using a monoclinic cell. Our results suggest that substitution of Mo6+ for Mn3+ (rather than Mn4+) coupled with the vacancy generation results in a distorted structure and unique morphology. The weakened Mn–O bonds and Mn vacancies associated with the structural distortion may be mainly responsible for the enhanced catalytic activity of monoclinic K-OMS-2 instead of dopant species. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.5b00906 |