Impact of hurricanes on the flux of rainwater and Cape Fear River water dissolved organic carbon to Long Bay, southeastern United States
The hurricane flux of rain and river water dissolved organic carbon (DOC) to Long Bay located on the southeastern coast of the United States was determined for four hurricanes that made landfall in the Cape Fear region of North Carolina. Riverine flux of DOC following hurricanes Fran (1996) and Floy...
Gespeichert in:
Veröffentlicht in: | Global biogeochemical cycles 2004-09, Vol.18 (3), p.GB3015.1-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hurricane flux of rain and river water dissolved organic carbon (DOC) to Long Bay located on the southeastern coast of the United States was determined for four hurricanes that made landfall in the Cape Fear region of North Carolina. Riverine flux of DOC following hurricanes Fran (1996) and Floyd (1999) represented one third and one half of the entire annual river flux of DOC to Long Bay, respectively. The majority of this DOC was recalcitrant and not available for biological consumption. The high flux of DOC from hurricane Floyd resulted from extremely high precipitation amounts (in excess of 50 cm) associated with the hurricane and subsequent flooding. High riverine DOC fluxes were observed following hurricane Fran but not hurricanes Bertha (1996) and Bonnie (1998). The westerly path of Fran deposited rain inland along the Cape Fear River watershed, causing high river flow conditions, while Bonnie and Bertha took an eastern path, resulting in a minimal effect to the Cape Fear River flow rates. The rainwater flux of total DOC to Long Bay from the four hurricanes was not as dramatic as that observed for riverine fluxes. However, unlike river water DOC that is refractory, rainwater DOC is highly labile. Rainwater from the four hurricanes in this study deposited 2–5 times the DOC deposited in an average storm. This represented a flux of 3–9% of the entire annual budget of bioavailable DOC to Long Bay being deposited over a 1 or 2 day period, likely spurring short‐term secondary productivity following the hurricanes. |
---|---|
ISSN: | 0886-6236 1944-9224 |
DOI: | 10.1029/2004GB002229 |