The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constraints on their origin and hazards

Popocatépetl volcano is the most active volcano in central Mexico, and represents a high risk for more than 40 million people, including Mexico City. In 1994, volcanic activity at Popocatépetl renewed with the formation of ash-rich plumes up to 7 km high. In April 1996, lava emissions filled the cra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of volcanology and geothermal research 2004-03, Vol.131 (3), p.351-369
Hauptverfasser: Capra, L., Poblete, M.A., Alvarado, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Popocatépetl volcano is the most active volcano in central Mexico, and represents a high risk for more than 40 million people, including Mexico City. In 1994, volcanic activity at Popocatépetl renewed with the formation of ash-rich plumes up to 7 km high. In April 1996, lava emissions filled the crater and were accompanied by a series of explosions that produced eruptive columns up to 8 km high. Associated with explosive events in 1997 and 2001, two major lahars events occurred, leaving debris flow deposits along Huiloac Gorge for as far as 15 km, to the town of Santiago Xalitzinta. The 1997 debris flow deposit originated after a prolonged emission of ash which caused glacier melt and a rapid release of water (1×10 7 m 3). The amount of melting water was sufficient to gradually erode the river bed causing a flood that gradually transformed from a debris flow to a hyperconcentrated flow. In contrast, the 2001 debris flow that originated from a post-depositional remobilization of a pumice flow deposit, did not experience any flow transformation and carried 25% water at maximum. The different behavior of these two lahars has important hazard implications. Both lahars reached Xalitzintla town, but at that point, the 1997 lahar had already transformed into a sediment-loaded stream flow. The 2001 lahar, by contrast, maintained the characteristics of a debris flow, being more competent, and with greater destructive power. What happened with these lahars demonstrates how important it is to take into consideration secondary volcanic phenomena. Even though they were not large flows, they were capable of threatening populated areas, even during periods of volcanic quiescence or reduced magmatic activity.
ISSN:0377-0273
1872-6097
DOI:10.1016/S0377-0273(03)00413-X