Aggregation-Induced-Emissive Molecule Incorporated into Polymeric Nanoparticulate as FRET Donor for Observing Doxorubicin Delivery

Tetraphenylethene (TPE) derivatives characterized with distinct aggregation-induced-emission, attempted to aggregate with doxorubicin (Dox) to formulate the interior compartment of polymeric nanoparticulate, served as fluorescence resonance energy transfer (FRET) donor to promote emission of accepto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-10, Vol.7 (42), p.23760-23766
Hauptverfasser: Han, Xiongqi, Liu, De-E, Wang, Tieyan, Lu, Hongguang, Ma, Jianbiao, Chen, Qixian, Gao, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetraphenylethene (TPE) derivatives characterized with distinct aggregation-induced-emission, attempted to aggregate with doxorubicin (Dox) to formulate the interior compartment of polymeric nanoparticulate, served as fluorescence resonance energy transfer (FRET) donor to promote emission of acceptor Dox. Accordingly, this FRET formulation allowed identification of Dox in complexed form by detecting FRET. Important insight into the Dox releasing can be subsequently explored by extracting complexed Dox (FRET) from the overall Dox via direct single-photon excitation of Dox. Of note, functional catiomers were used to complex with FRET partners for a template formulation, which was verified to induce pH-responsive release in the targeted subcellular compartment. Hence, this well-defined multifunctional system entitles in situ observation of the drug releasing profile and insight on drug delivery journey from the tip of injection vein to the subcellular organelle of the targeted cells.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.5b08202