Mesenchymal Stem Cells Aggregate and Deliver Gold Nanoparticles to Tumors for Photothermal Therapy

Gold nanoparticles (AuNPs) have been extensively studied for photothermal cancer therapy because AuNPs can generate heat upon near-infrared irradiation. However, improving their tumor-targeting efficiency and optimizing the nanoparticle size for maximizing the photothermal effect remain challenging....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2015-10, Vol.9 (10), p.9678-9690
Hauptverfasser: Kang, Seokyung, Bhang, Suk Ho, Hwang, Sekyu, Yoon, Jeong-Kee, Song, Jaejung, Jang, Hyeon-Ki, Kim, Sungjee, Kim, Byung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gold nanoparticles (AuNPs) have been extensively studied for photothermal cancer therapy because AuNPs can generate heat upon near-infrared irradiation. However, improving their tumor-targeting efficiency and optimizing the nanoparticle size for maximizing the photothermal effect remain challenging. We demonstrate that mesenchymal stem cells (MSCs) can aggregate pH-sensitive gold nanoparticles (PSAuNPs) in mildly acidic endosomes, target tumors, and be used for photothermal therapy. These aggregated structures had a higher cellular retention in comparison to pH-insensitive, control AuNPs (cAuNPs), which is important for the cell-based delivery process. PSAuNP-laden MSCs (MSC-PSAuNPs) injected intravenously to tumor-bearing mice show a 37-fold higher tumor-targeting efficiency (5.6% of the injected dose) and 8.3 °C higher heat generation compared to injections of cAuNPs after irradiation, which results in a significantly enhanced anticancer effect.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b02207