Molecular characterization of the operon comprising the spoIV gene of Bacillus megaterium DSM319 and generation of a deletion mutant

According to sequence analysis, the spoIV-locus of Bacillus megaterium DSM319 is 1,185 bp long; it is the second gene of a sporulation operon, which altogether contains three open reading frames. The ORF preceding spoIV encodes a putative polypeptide with 94 amino acids; the 3rd ORF of the operon ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general and applied microbiology 1998, Vol.44(5), pp.317-326
Hauptverfasser: Wittchen, Klaus-Detlev, Strey, Jan, Bültmann, Andreas, Reichenberg, Stefan, Meinhardt, Friedhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to sequence analysis, the spoIV-locus of Bacillus megaterium DSM319 is 1,185 bp long; it is the second gene of a sporulation operon, which altogether contains three open reading frames. The ORF preceding spoIV encodes a putative polypeptide with 94 amino acids; the 3rd ORF of the operon has 972 bp corresponding to 324 amino acids. The operon is flanked on both sides by palindromic sequences, probably representing Rho-independent terminators. A primer extension analysis revealed that mRNA synthesis starts immediately downstream of a promoter, which is similar to the consensus sequence of Bacillus subtilis σE dependent promoters. Both the −35 and the −10 region are within the terminator region of the preceding operon. Gene knockout experiments and reporter gene assays with a newly developed system based on the heterologous Paenibacillus macerans glucanase gene (bgl) confirmed σE-dependent transcription. Two open reading frames of a further upstream operon were also identified. Northern analysis revealed that transcription of these ORFs comes about in late sporulation phases. The genetic organization of the spoIV comprising operon and adjacent loci clearly resembles that of the B. subtilis yqfa-phoH gene cluster. Thus our findings are of general significance for endospore-forming bacteria.
ISSN:0022-1260
1349-8037
DOI:10.2323/jgam.44.317