Supraspinal Flumazenil Inhibits the Antianalgesic Action of Spinal Dynorphin A [1–17]
DynorphinA (Dyn) administered intrathecally or released spinally in mice produces antianalgesia, that is, antagonizes morphine analgesia (tail-flick test). Spinal transection eliminates this Dyn antianalgesia. Present results in mice show that intracerebroventricular administration of flumazenil, a...
Gespeichert in:
Veröffentlicht in: | Pharmacology, biochemistry and behavior biochemistry and behavior, 1998-05, Vol.60 (1), p.245-254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DynorphinA (Dyn) administered intrathecally or released spinally in mice produces antianalgesia, that is, antagonizes morphine analgesia (tail-flick test). Spinal transection eliminates this Dyn antianalgesia. Present results in mice show that intracerebroventricular administration of flumazenil, a benzodiazepine receptor antagonist, also eliminated the antianalgesic action of Dyn; flumazenil in the brain eliminated the suppressant effect of intrathecal Dyn on intrathecal and intracerebroventricular morphine-induced antinociception. Intracerebroventricular clonidine, naloxone, and norbinaltorphimine release spinal Dyn. The latent antinociceptive actions of these compounds were uncovered by intracerebroventricular flumazenil. Thus, Dyn, given intrathecally or released spinally, activates a pathway that is inhibited by intracerebroventricular flumazenil. Dyn antianalgesia is not significantly altered by intracerebroventricular administration of bicuculline and picrotoxin, suggesting that activation of the gamma-aminobutyric acid receptor has little if any involvement in the antianalgesic action of Dyn. The antagonistic effect of Dyn seems to be mimicked by benzodiazepine agonists. Furthermore, administration of a benzodiazepine receptor inverse agonist (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate) inhibited Dyn antianalgesia as did flumazenil. Thus, flumazenil, through a benzodiazepine antagonist or inverse agonist action, interrupts, as does spinal transection, the neuronal circuit (cord/brain/cord) necessary for the antianalgesic action of spinal Dyn. Because Dyn antianalgesia is an indirect action, activation of the neuronal circuit must lead to the release of a direct-acting antianalgesic mediator in the spinal cord. |
---|---|
ISSN: | 0091-3057 1873-5177 |
DOI: | 10.1016/S0091-3057(97)00578-9 |