Nitrogen and Phosphorus Limitation in a Coastal Barrier Salt Marsh: The Implications for Vegetation Succession

1 A factorial fertilizer experiment was conducted in a 15-year-old coastal barrier salt marsh with a low soil nitrogen content, and in an older 100-year-old marsh with a higher nitrogen content. Plots were fertilized at high and low marsh elevations in both marshes. Nitrogen and phosphorus were appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of ecology 1999-04, Vol.87 (2), p.265-272
Hauptverfasser: van Wijnen, Harm J., Bakker, Jan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1 A factorial fertilizer experiment was conducted in a 15-year-old coastal barrier salt marsh with a low soil nitrogen content, and in an older 100-year-old marsh with a higher nitrogen content. Plots were fertilized at high and low marsh elevations in both marshes. Nitrogen and phosphorus were applied at low and high concentrations both separately and in combination in each of 3 successive years. 2 Nitrogen limited above-ground plant growth in both young and old salt marshes in all years. Phosphorus limitation of plant growth was apparent in the first year in the young marsh and in the last year in both marshes. In young marshes with low soil organic matter, phosphorus limitation may occur. In addition, phosphorus limitation occurs at both successional stages when a marsh is saturated with nitrogen. 3 Plant species that are typical of nitrogen-rich habitats and late successional stages significantly increased in biomass after fertilization. Limonium vulgare, a low stature species of early and intermediate successional stages, decreased in biomass, whereas the taller Elymus pycnanthus and Artemisia maritima increased. After 3 years of fertilization, plant species composition in a young marsh was similar to the species composition in an unfertilized older marsh. Fertilization of a 100-year-old marsh, however, still resulted in a change in plant species composition, suggesting that succession was still occurring and that, overall, plants in marshes of different age are similar in their response to fertilization.
ISSN:0022-0477
1365-2745
DOI:10.1046/j.1365-2745.1999.00349.x