Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation

We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-10, Vol.23 (21), p.27806-27818
Hauptverfasser: Hébert, Nicolas Bourbeau, Michaud-Belleau, Vincent, Anstie, James D, Deschênes, Jean-Daniel, Luiten, Andre N, Genest, Jérôme
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control over the spectral point spacing, bandwidth and central wavelength of the comb. The comb is mixed with a local oscillator generated from the same CW laser frequency-shifted by an acousto-optic modulator, enabling a self-heterodyne detection scheme. The current configuration offers a calibrated spectrum every 1.12 µs. We demonstrate the capabilities of the spectrometer by producing averaged, as well as time-resolved, spectra of the D1 transition of cesium with a 9.8-MHz point spacing, a 50-kHz resolution and a span of more than 3 GHz. The spectra obtained after 1 ms of averaging are fitted with complex Voigt profiles that return parameters in good agreement with expected values.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.027806