Effects of Population Density on Individual Growth of Brown Trout in Streams

Some studies suggest that lotic populations of brown trout (Salmo trutta) are regulated through density-dependent mortality and emigration to the extent that mean growth rates of resident survivors are unrelated to trout densities. To test this, we studied the relationship between density and growth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 1999-04, Vol.80 (3), p.941-956
Hauptverfasser: Jenkins, Thomas M., Diehl, Sebastian, Kratz, Kim W., Cooper, Scott D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some studies suggest that lotic populations of brown trout (Salmo trutta) are regulated through density-dependent mortality and emigration to the extent that mean growth rates of resident survivors are unrelated to trout densities. To test this, we studied the relationship between density and growth, mortality, and emigration of brown trout in two alpine streams and a set of stream channels in eastern California. We sampled trout at the scale of "segments" (5-31 m long riffles, runs, and pools) and "sections" (340-500 m in length) of Convict Creek over a 3-yr period. Trout were also sampled during 6 yr in seven 90-m sections of Mammoth Creek. For 2 yr, we manipulated trout densities in Convict Creek by removing trout from two sections and adding trout to two other sections. We also manipulated densities in seven 50-m stream channels, using a natural size distribution of trout in one year and underyearlings only in a second year. In both streams, average size (body length or mass) of underyearlings in fall was negatively related to trout density and was furthermore affected by sampling location and year. The strong, negative relationship between individual mass and density of trout could be detected at the spatial scale of whole sections, but not at the scale of individual segments. The Convict Creek and stream channel experiments also revealed strong negative effects of density on average mass of underyearlings in fall, and on proportional mass increase of yearling and older trout from spring to fall. In contrast, mortality and emigration were unrelated to initial stocking densities in the channels. In all our data, the negative effects on growth were most pronounced at densities
ISSN:0012-9658
1939-9170
DOI:10.1890/0012-9658(1999)080[0941:EOPDOI]2.0.CO;2