Quantification and cellular localization of dopamine in the salivary gland of the ixodid tick Amblyomma hebraeum
Dopamine (DA) content of the salivary glands in partially fed female and fed male ticks, Amblyomma hebraeum Koch (Acari: Ixodidae), was measured by high-performance liquid chromatography with electrochemical detection or by a radioenzymatic assay for catecholamines following experimental treatment....
Gespeichert in:
Veröffentlicht in: | Experimental & applied acarology 1999-03, Vol.23 (3), p.251-265 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dopamine (DA) content of the salivary glands in partially fed female and fed male ticks, Amblyomma hebraeum Koch (Acari: Ixodidae), was measured by high-performance liquid chromatography with electrochemical detection or by a radioenzymatic assay for catecholamines following experimental treatment. Some glands were held in vitro for up to 3 days. Other preparations ('backless explants') allowed one side to be surgically denervated, the contralateral side serving as control. Normal ticks were sampled for up to 4 days post-removal from the host (rabbits). In the backless explants, there was little if any difference in DA content between denervated and control sides, even after 4 days in vitro, indicating that unilateral denervation did not eliminate the major salivary gland pool of DA. High doses of reserpine (333 μg per g body weight) and 6-hydroxydopamine (1000 μg per g body weight) did not significantly reduce the DA content of the salivary gland, also suggesting that only a minor component of the DA pool is within axons innervating the salivary gland. A dispersed population of cells rich in tyrosine hydroxylase immunoreactivity (an enzyme marker for catecholamine-synthesizing cells) was found in close association with the granular acini. This further suggests that the major DA pool in the salivary gland may be in cells other than the dopaminergic nerves arising from the central nervous system. © Rapid Science Ltd. 1998 |
---|---|
ISSN: | 0168-8162 1572-9702 |
DOI: | 10.1023/A:1006071031547 |