Metabolite of SIR2 Reaction Modulates TRPM2 Ion Channel

The transient receptor potential melastatin-related channel 2 (TRPM2) is a nonselective cation channel, whose prolonged activation by oxidative and nitrative agents leads to cell death. Here, we show that the drug puromycin selectively targets TRPM2-expressing cells, leading to cell death. Our data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-05, Vol.281 (20), p.14057-14065
Hauptverfasser: Grubisha, Olivera, Rafty, Louise A., Takanishi, Christina L., Xu, Xiaojie, Tong, Lei, Perraud, Anne-Laure, Scharenberg, Andrew M., Denu, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transient receptor potential melastatin-related channel 2 (TRPM2) is a nonselective cation channel, whose prolonged activation by oxidative and nitrative agents leads to cell death. Here, we show that the drug puromycin selectively targets TRPM2-expressing cells, leading to cell death. Our data suggest that the silent information regulator 2 (Sir2 or sirtuin) family of enzymes mediates this susceptibility to cell death. Sirtuins are protein deacetylases that regulate gene expression, apoptosis, metabolism, and aging. These NAD+-dependent enzymes catalyze a reaction in which the acetyl group from substrate is transferred to the ADP-ribose portion of NAD+ to form deacetylated product, nicotinamide, and the metabolite OAADPr, whose functions remain elusive. Using cell-based assays and RNA interference, we show that puromycin-induced cell death is greatly diminished by nicotinamide (a potent sirtuin inhibitor), and by decreased expression of sirtuins SIRT2 and SIRT3. Furthermore, we demonstrate using channel current recordings and binding assays that OAADPr directly binds to the cytoplasmic domain of TRPM2 and activates the TRPM2 channel. ADP-ribose binds TRPM2 with similarly affinity, whereas NAD+ displays almost negligible binding. These studies provide the first evidence for the potential role of sirtuin-generated OAADPr in TRPM2 channel gating.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M513741200