The quantum temperature of accelerating cosmological models of an entangled Universe

Since the conception of quantum cosmology was introduced by Lemaitre in 1931, many authors have discussed the quantum nature of the Universe. Yet the most significant new feature of quantum physics, the notion of quantum nonlocality and its verification using Earth-based experiments, is never addres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2005, Vol.35 (1), p.111-115
Hauptverfasser: Blome, Hans-Joachim, Wilson, Thomas L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since the conception of quantum cosmology was introduced by Lemaitre in 1931, many authors have discussed the quantum nature of the Universe. Yet the most significant new feature of quantum physics, the notion of quantum nonlocality and its verification using Earth-based experiments, is never addressed by cosmologists because they basically do not know how to deal with it. In the spirit of making the transition “from quarks to cosmos” we will demonstrate how this is done. We show how to estimate the temperature of the flat Friedmann–Lemaitre–Robertson–Walker spacetime using a spherically symmetric approximation of the metric in conjunction with Lee’s theorem for scalar quantum fields on curved backgrounds. This temperature dependence is not the same as the classical Gamow temperature which follows from general relativity for the radiation-dominated era of the Big Bang model, and we relate this result to the question of decoherence in the very early Universe.
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2003.09.056