Novel Carbazole-Based Hole-Transporting Materials with Star-Shaped Chemical Structures for Perovskite-Sensitized Solar Cells
Novel carbazole-based hole-transporting materials (HTMs), including extended π-conjugated central core units such as 1,4-phenyl, 4,4′-biphenyl, or 1,3,5-trisphenylbenzene for promoting effective π–π stacking as well as the hexyloxy flexible group for enhancing solubility in organic solvent, have bee...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2015-10, Vol.7 (40), p.22213-22217 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel carbazole-based hole-transporting materials (HTMs), including extended π-conjugated central core units such as 1,4-phenyl, 4,4′-biphenyl, or 1,3,5-trisphenylbenzene for promoting effective π–π stacking as well as the hexyloxy flexible group for enhancing solubility in organic solvent, have been synthesized as HTM of perovskite-sensitized solar cells. A HTM with 1,3,5-trisphenylbenzene core, coded as SGT-411, exhibited the highest charge conductivity caused by its intrinsic property to form crystallized structure. The perovskite-sensitized solar cells with SGT-411 exhibited the highest PCE of 13.00%, which is 94% of that of the device derived from spiro-OMeTAD (13.76%). Time-resolved photoluminescence spectra indicate that SGT-411 shows the shortest decay time constant, which is in agreement with the trends of conductivity data, indicating it having fastest charge regeneration. In this regard, a carbazole-based HTM with star-shaped chemical structure is considered to be a promising candidate HTM. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.5b04662 |