Age, Growth, and Mortality of Introduced Flathead Catfish in Atlantic Rivers and a Review of Other Populations

Knowledge of individual growth and mortality rates of an introduced fish population is required to determine the success and degree of establishment as well as to predict the fish's impact on native fauna. The age and growth of flathead catfish Pylodictis olivaris have been studied extensively...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:North American journal of fisheries management 2006-02, Vol.26 (1), p.73-87
Hauptverfasser: Kwak, Thomas J., Waters, D. Scott, Pine, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowledge of individual growth and mortality rates of an introduced fish population is required to determine the success and degree of establishment as well as to predict the fish's impact on native fauna. The age and growth of flathead catfish Pylodictis olivaris have been studied extensively in the species' native and introduced ranges, and estimates have varied widely. We quantified individual growth rates and age structure of three introduced flathead catfish populations in North Carolina's Atlantic slope rivers using sagittal otoliths, determined trends in growth rates over time, compared these estimates among rivers in native and introduced ranges, and determined total mortality rates for each population. Growth was significantly faster in the Northeast Cape Fear River (NECFR) than in the Lumber and Neuse rivers. Fish in the NECFR grew to a total length of 700 mm by age 7, whereas fish in the Neuse and Lumber river populations reached this length by 8 and 10 years, respectively. The growth rates of fish in all three rivers were consistently higher than those of native riverine populations, similar to those of native reservoir populations, and slower than those of other introduced riverine populations. In general, recent cohorts (1998–2001 year‐classes) in these three rivers exhibited slower growth among all ages than did cohorts previous to the 1998 year‐class. The annual total mortality rate was similar among the three rivers, ranging from 0.16 to 0.20. These mortality estimates are considerably lower than those from the Missouri and Mississippi rivers, suggesting relatively low fishing mortality for these introduced populations. Overall, flathead catfish populations in reservoirs grow faster than those in rivers, the growth rates of introduced populations exceed those of native populations, and eastern United States populations grow faster than those in western states. Such trends constitute critical information for understanding and managing local populations.
ISSN:0275-5947
1548-8675
DOI:10.1577/M04-144.1