Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS2

The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-10, Vol.15 (10), p.6302-6308
Hauptverfasser: Wan, Chunlei, Kodama, Yumi, Kondo, Mami, Sasai, Ryo, Qian, Xin, Gu, Xiaokun, Koga, Kenji, Yabuki, Kazuhisa, Yang, Ronggui, Koumoto, Kunihito
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic materials where layered two-dimensional transition-metal dichalcogenide TiS2 is electrochemically intercalated with polar organic molecules. By manipulating the dielectric mismatch using polar organic molecules with different dielectric constants, ranging from 10 to 41, the electron mobility of the TiS2 layers was changed three times due to the dielectric screening of the Coulomb-impurity scattering processes. Both the overall thermal conductivity and the lattice thermal conductivity were also found to decrease with an increasing dielectric mismatch. The enhanced electrical mobility along with the decreased thermal conductivity together gave rise to a significantly improved thermoelectric figure of merit of the hybrid inorganic/organic materials at room temperature, which might find applications in wearable electronics.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.5b01013