Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin

The great freshwater fish diversity found in the neotropical region makes management and conservation actions challenging. Due to shortage of taxonomists and insufficient infrastructure to deal with such great biodiversity (i.e. taxonomic impediment), proposed remedies to accelerate species identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetica 2015-10, Vol.143 (5), p.581-588
Hauptverfasser: Gomes, Laís Carvalho, Pessali, Tiago Casarim, Sales, Naiara Guimarães, Pompeu, Paulo Santos, Carvalho, Daniel Cardoso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The great freshwater fish diversity found in the neotropical region makes management and conservation actions challenging. Due to shortage of taxonomists and insufficient infrastructure to deal with such great biodiversity (i.e. taxonomic impediment), proposed remedies to accelerate species identification and descriptions include techniques that combine DNA-based identification and concise morphological description. The building of a DNA barcode reference database correlating meristic and genetic data was developed for 75 % of the Mucuri River basin’s freshwater fish. We obtained a total of 141 DNA barcode sequences from 37 species belonging to 30 genera, 19 families, and 5 orders. Genetic distances within species, genera, and families were 0.74, 9.5, and 18.86 %, respectively. All species could be clearly identified by the DNA barcodes. Divergences between meristic morphological characteristics and DNA barcodes revealed two cryptic species among the Cyphocharax gilbert and Astyanax gr. bimaculatus specimens, and helped to identify two overlooked species within the Gymnotus and Astyanax taxa. Therefore, using a simplified model of neotropical biodiversity, we tested the efficiency of an integrative taxonomy approach for species discovery, identification of cryptic diversity, and accelerating biodiversity descriptions.
ISSN:0016-6707
1573-6857
DOI:10.1007/s10709-015-9856-z