Brain-computer interface technologies: from signal to action

Here, we present a state-of-the-art review of the research performed on the brain-computer interface (BCI) technologies with a focus on signal processing approaches. BCI can be divided into three main components: signal acquisition, signal processing, and effector device. The signal acquisition comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews in the neurosciences 2013, Vol.24 (5), p.537-552
Hauptverfasser: Ortiz-Rosario, Alexis, Adeli, Hojjat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we present a state-of-the-art review of the research performed on the brain-computer interface (BCI) technologies with a focus on signal processing approaches. BCI can be divided into three main components: signal acquisition, signal processing, and effector device. The signal acquisition component is generally divided into two categories: noninvasive and invasive. For noninvasive, this review focuses on electroencephalogram. For the invasive, the review includes electrocorticography, local field potentials, multiple-unit activity, and single-unit action potentials. Signal processing techniques reviewed are divided into time-frequency methods such as Fourier transform, autoregressive models, wavelets, and Kalman filter and spatiotemporal techniques such as Laplacian filter and common spatial patterns. Additionally, various signal feature classification algorithms are discussed such as linear discriminant analysis, support vector machines, artificial neural networks, and Bayesian classifiers. The article ends with a discussion of challenges facing BCI and concluding remarks on the future of the technology.
ISSN:0334-1763
2191-0200
DOI:10.1515/revneuro-2013-0032