Anti-biofilm activity of ultrashort cinnamic acid peptide derivatives against medical device-related pathogens
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug‐resistant pathogens. Biofilm‐forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of...
Gespeichert in:
Veröffentlicht in: | Journal of peptide science 2015-10, Vol.21 (10), p.770-778 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug‐resistant pathogens. Biofilm‐forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra‐peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram‐positive medical device‐related pathogens. 3‐(4‐Hydroxyphenyl)propionic)‐Orn‐Orn‐Trp‐Trp‐NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24‐h biofilms at MBEC with 6‐h exposure. Reduced cell cytotoxicity, relative to Gram‐positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).
Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost‐effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
There was a rapid eradication of established two biofilms by short cinnamic–peptide hybrids within 6 h at microgram per millilitre concentrations and no significant toxicity was demonstrated. It is potential as future antimicrobial therapies to combat antimicrobial resistance. |
---|---|
ISSN: | 1075-2617 1099-1387 |
DOI: | 10.1002/psc.2805 |