Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

We investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow‐through conditions. By performing laboratory bench‐scale experiments combined with numerical modeling, we show the important influence of Coulombic effects on proton transport in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2015-08, Vol.51 (8), p.6739-6755
Hauptverfasser: Muniruzzaman, Muhammad, Rolle, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow‐through conditions. By performing laboratory bench‐scale experiments combined with numerical modeling, we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two‐dimensional flow‐through setup under steady‐state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also differences in the dilution of the distinct ions plumes up to 28% and 45% in experiment 1 and 2, respectively, were measured at the outflow of the flow‐through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow‐through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow‐through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow‐through system. The results of purely forward simulations show a very good agreement with the high‐resolution measurements performed at the outlet of the flow‐through setup and confirms the importance of charge effects on pH transport in porous media. Key Points: Propagation of pH fronts strongly depends on electrostatic interactions Clear coupling of dispersive ionic fluxes also in advection‐dominated systems Multicomponent ionic transport modeling necessary to interpret the experiments
ISSN:0043-1397
1944-7973
DOI:10.1002/2015WR017134