Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish

Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryobiology 2014-12, Vol.69 (3), p.386-393
Hauptverfasser: Fang, Lu, Bai, Chenglian, Chen, Yuanhong, Dai, Jun, Xiang, Yang, Ji, Xiaoping, Huang, Changjiang, Dong, Qiaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) are one of the main causes for decreased viability in cryopreserved sperm. Many studies have reported the beneficial effect of antioxidant supplements in freezing media for post-thaw sperm quality. In the present study, we explored two new approaches of ROS inhibition in sperm cryopreservation of yellow catfish, namely mitochondrial-targeted antioxidant and metabolic modulator targeting mitochondrial uncoupling pathways. Our study revealed that addition of MitoQ, a compound designed to deliver ubiquinone into mitochondria, significantly decreased ROS production, as well as lipid peroxidation, and increased post-thaw viability. Similarly, sperm incubated with 2,4-dinitrophenol (DNP), a chemical protonophore that induces mitochondrial uncoupling, also had reduced ROS production, as well as lipid peroxidation, and increased post-thaw sperm viability. Conversely, activation of uncoupling protein (UCP2) by 4-hydroxynonenal (HNE) neither reduced ROS production nor increased post-thaw sperm viability. Our findings indicate that ROS inhibition through mitochondrial-targeted antioxidant or mild mitochondrial uncoupling is beneficial for sperm cryopreservation in yellow catfish. Our study provides novel methods to mitigate oxidative stress induced damage in cryopreserved sperm for future applications.
ISSN:0011-2240
1090-2392
DOI:10.1016/j.cryobiol.2014.09.005