Functional assessment of three Rem residues identified as critical for interactions with Ca(2+) channel β subunits

Members of the Rem, Rem2, Rad, Gem/Kir (RGK) family of small GTP-binding proteins inhibit high-voltage-activated (HVA) Ca(2+) channels through interactions with both the principal α1 and the auxiliary β subunits of the channel complex. Three highly conserved residues of Rem (R200, L227, and H229) ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2015-11, Vol.467 (11), p.2299-2306
Hauptverfasser: Beqollari, Donald, Romberg, Christin F, Filipova, Dilyana, Papadopoulos, Symeon, Bannister, Roger A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Members of the Rem, Rem2, Rad, Gem/Kir (RGK) family of small GTP-binding proteins inhibit high-voltage-activated (HVA) Ca(2+) channels through interactions with both the principal α1 and the auxiliary β subunits of the channel complex. Three highly conserved residues of Rem (R200, L227, and H229) have been shown in vitro to be critical for interactions with β subunits. However, the functional significance of these residues is not known. To investigate the contributions of R200, L227, and H229 to β subunit-mediated RGK protein-dependent inhibition of HVA channels, we introduced alanine substitutions into all three positions of Venus fluorescent protein-tagged Rem (V-Rem AAA) and made three other V-Rem constructs with an alanine introduced at only one position (V-Rem R200A, V-Rem L227A, and V-Rem H229A). Confocal imaging and immunoblotting demonstrated that each Venus-Rem mutant construct had comparable expression levels to Venus-wild-type Rem when heterologously expressed in tsA201 cells. In electrophysiological experiments, V-Rem AAA failed to inhibit N-type Ca(2+) currents in tsA201 cells coexpressing CaV2.2 α1B, β3, and α2δ-1 channel subunits. The V-Rem L227A single mutant also failed to reduce N-type currents conducted by coexpressed CaV2.2 channels, a finding consistent with the previous observation that a leucine at position 227 is critical for Rem-β interactions. Rem-dependent inhibition of CaV2.2 channels was impaired to a much lesser extent by the R200A substitution. In contrast to the earlier work demonstrating that Rem H229A was unable to interact with β3 subunits in vitro, V-Rem H229A produced nearly complete inhibition of CaV2.2-mediated currents.
ISSN:1432-2013
DOI:10.1007/s00424-015-1700-x