The influence of maternal energy status during mid-gestation on beef offspring tenderness, muscle characteristics, and gene expression
The objective of this study was to determine if maternal energy status during mid-gestation influences the expression of genes regulating muscle and fat development, and muscle characteristics that may impact meat tenderness. Cows grazed dormant, native range (Positive Energy Status [PES]) or were f...
Gespeichert in:
Veröffentlicht in: | Meat science 2015-12, Vol.110, p.201-211 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this study was to determine if maternal energy status during mid-gestation influences the expression of genes regulating muscle and fat development, and muscle characteristics that may impact meat tenderness. Cows grazed dormant, native range (Positive Energy Status [PES]) or were fed at 80% of maintenance energy requirements (Negative Energy Status [NES]) during mid-gestation. Steer offspring were harvested after 21 d in the feedlot (weaning subsample) or after 208 d in the feedlot (final subsample). Greater 21-d tenderness was observed in NES steers, resulting from reduced collagen content in longissimus lumborum steaks. In the semitendinosus, NES steers had greater soluble collagen, and down-regulated expression of MHC-IIA and TIMP-3 at weaning, while MHC-IIA expression was up-regulated in NES steers in the final harvest. Data show mid-gestational maternal energy status may impact offspring tenderness and collagen, but differences were not detected in expression of genes important in myogenesis and adipogenesis in muscle samples obtained from steers at weaning or slaughter.
•Alterations in gestational nutrition influence fetal development.•We examined this phenomenon by restricting energy to beef cows during mid-gestation.•Energy restriction during mid-gestation affects meat tenderness of offspring.•Changes in tenderness may be related to collagen content of muscle. |
---|---|
ISSN: | 0309-1740 1873-4138 |
DOI: | 10.1016/j.meatsci.2015.07.017 |