Pelagic habitat of seabirds in the eastern tropical Pacific: effects of foraging ecology on habitat selection

A central tenet of ecology is the quantification of species-habitat relationships in order to explain spatial variability in the distribution and abundance patterns of animals. We quantified habitat preferences for 6 tropical seabird species representing a phylogenetically and ecologically diverse g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine ecology. Progress series (Halstenbek) 2006-06, Vol.315, p.279-292
Hauptverfasser: Vilchis, L. Ignacio, Ballance, Lisa T., Fiedler, Paul C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A central tenet of ecology is the quantification of species-habitat relationships in order to explain spatial variability in the distribution and abundance patterns of animals. We quantified habitat preferences for 6 tropical seabird species representing a phylogenetically and ecologically diverse group within the eastern tropical Pacific (ETP). Seabird censuses were conducted aboard NOAA research vessels from August to November of 1989 and 1990 using 300 m strip transect methods. Simultaneously with the seabird censuses and from the same ships, oceanic habitat was quantified by measuring sea surface temperature, salinity, and chlorophyll, as well as thermocline depth and strength. We quantified seabird habitat using generalized additive models fitted with forward and backward selection algorithms based on minimizing the Akaike information criterion (AIC). In general, seabird habitat models performed well in explaining spatial variability in abundance, reducing the null deviance to ranges between 42.8 and 73.5%, and predicting seabird density patterns with an accuracy ranging from 56.6 to 80.5%. Relative abundance of the species modeled affected the outcome: the higher the abundance, the more robust the fit. Seabirds feeding on fishes and squids associated with habitats characterized by deep (>100 m) and strong (>2°C 10 m–1) thermoclines, while planktivorous species preferred habitat characterized by shallower thermoclines with cooler surface temperatures (
ISSN:0171-8630
1616-1599
DOI:10.3354/meps315279