Core Mutations That Promote the Calcium-Induced Allosteric Transition of Bovine Recoverin

Recoverin is a small calcium binding protein involved in regulation of the phototransduction cascade in retinal rod cells. It functions as a calcium sensor by undergoing a cooperative, ligand-dependent conformational change, resulting in the extrusion of the N-terminal myristoyl group from a hydroph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1998-12, Vol.37 (50), p.17408-17419
Hauptverfasser: Baldwin, Anne N, Ames, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recoverin is a small calcium binding protein involved in regulation of the phototransduction cascade in retinal rod cells. It functions as a calcium sensor by undergoing a cooperative, ligand-dependent conformational change, resulting in the extrusion of the N-terminal myristoyl group from a hydrophobic pocket. To test the role of certain core residues in tuning this allosteric switch, we have made and characterized two mutants:  W31K, which replaces Trp31 with Lys; and a double mutant, I52A/Y53A, in which Ile52 and Tyr53 are both replaced by Ala. These mutations decrease the hydrophobicity of the myristoyl binding pocket. They are thus expected to make sequestering of the myristoyl group less favorable and destabilize the Ca2+-free state. As predicted, the myristoylated forms of the mutants exhibit increased affinity for Ca2+, whether monitored by equilibrium binding of 45Ca2+ (K d = 17.2, 7.9, and 8.1 μM for wild type, W31K, and I52A/Y53A, respectively) or by the change in tryptophan fluorescence associated with the conformational change (K d = 17.9, 3.6, and 4.4 μM for wild type, W31K, and I52A/Y53A, respectively). The mutants also exhibit decreased cooperativity of binding (Hill coefficient = 1.2 and 1.0 for W31K and I52A/Y53A vs 1.4 for wild type). Binding of the mutant proteins to rod outer segment membranes occurs at lower Ca2+ concentrations compared to wild-type protein (K 1/2 = 5.6, 2.2, and 1.0 μM for wild type, W31K, and I52A/Y53A, respectively). The unmyristoylated forms of the mutants exhibit biphasic Ca2+ binding curves, nearly identical to that observed for wild type. The binding data for the two mutants can be explained by a concerted allosteric model in which the mutations affect only the equilibrium constant L between the two allosteric forms, T (the Ca2+-free form) and R (the Ca2+-bound form), without affecting the intrinsic binding constants for the two Ca2+ sites. Two-dimensional NMR spectra of the Ca2+-free forms of the mutants have been compared to the wild-type spectrum, whose peaks have been assigned to specific residues (1). Many resonances assigned to residues in the C-terminal domain (residues 100−202) in the wild-type spectrum are identical in the mutant spectra, suggesting that the backbone structure of the C-terminal domain is probably unchanged in both mutants. The N-terminal domain, in which both mutations are located, reveals in each case numerous changes of undetermined spatial extent.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi980928s