Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite

Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38–74 μm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2006, Vol.40 (2), p.364-372
Hauptverfasser: Song, S., Lopez-Valdivieso, A., Hernandez-Campos, D.J., Peng, C., Monroy-Fernandez, M.G., Razo-Soto, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arsenic removal from high-arsenic water in a mine drainage system has been studied through an enhanced coagulation process with ferric ions and coarse calcite (38–74 μm) in this work. The experimental results have shown that arsenic-borne coagulates produced by coagulation with ferric ions alone were very fine, so micro-filtration (membrane as filter medium) was needed to remove the coagulates from water. In the presence of coarse calcite, small arsenic-borne coagulates coated on coarse calcite surfaces, leading the settling rate of the coagulates to considerably increase. The enhanced coagulation followed by conventional filtration (filter paper as filter medium) achieved a very high arsenic removal (over 99%) from high-arsenic water (5 mg/l arsenic concentration), producing a cleaned water with the residual arsenic concentration of 13 μg/l. It has been found that the mechanism by which coarse calcite enhanced the coagulation of high-arsenic water might be due to attractive electrical double layer interaction between small arsenic-borne coagulates and calcite particles, which leads to non-existence of a potential energy barrier between the heterogeneous particles.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2005.09.046