gamma-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid beta peptides of varying length

gamma-Secretase activity is the final cleavage event that releases the amyloid beta peptide (Abeta) from the beta-secretase cleaved carboxyl-terminal fragment of the amyloid beta protein precursor (APP). No protease responsible for this highly unusual, purportedly intramembranous, cleavage has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1999-04, Vol.274 (17), p.11914-11923
Hauptverfasser: Murphy, M P, Hickman, L J, Eckman, C B, Uljon, S N, Wang, R, Golde, T E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:gamma-Secretase activity is the final cleavage event that releases the amyloid beta peptide (Abeta) from the beta-secretase cleaved carboxyl-terminal fragment of the amyloid beta protein precursor (APP). No protease responsible for this highly unusual, purportedly intramembranous, cleavage has been definitively identified. We examined the substrate specificity of gamma-secretase by mutating various residues within or adjacent to the transmembrane domain of the APP and then analyzing Abeta production from cells transfected with these mutant APPs by enzyme-linked immunosorbent assay and mass spectrometry. Abeta production was also analyzed from a subset of transmembrane domain APP mutants that showed dramatic shifts in gamma-secretase cleavage in the presence or absence of pepstatin, an inhibitor of gamma-secretase activity. These studies demonstrate that gamma-secretase's cleavage specificity is primarily determined by location of the gamma-secretase cleavage site of APP with respect to the membrane, and that gamma-secretase activity is due to the action of multiple proteases exhibiting both a pepstatin- sensitive activity and a pepstatin-insensitive activity. Given that gamma-secretase is a major therapeutic target in Alzheimer's disease these studies provide important information with respect to the mechanism of Abeta production that will direct efforts to isolate the gamma-secretases and potentially to develop effective therapeutic inhibitors of pathologically relevant gamma-secretase activities.
ISSN:0021-9258
DOI:10.1074/jbc.274.17.11914