Role of the Myxoma Virus Soluble CC-Chemokine Inhibitor Glycoprotein, M-T1, during Myxoma Virus Pathogenesis
Myxoma virus is a poxvirus that causes a virulent systemic disease called myxomatosis in European rabbits. Like many poxviruses, myxoma virus encodes a variety of secreted proteins that subvert the antiviral activities of host cytokines. It was recently demonstrated that the myxoma virus M-T1 glycop...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 1999-04, Vol.256 (2), p.233-245 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myxoma virus is a poxvirus that causes a virulent systemic disease called myxomatosis in European rabbits. Like many poxviruses, myxoma virus encodes a variety of secreted proteins that subvert the antiviral activities of host cytokines. It was recently demonstrated that the myxoma virus M-T1 glycoprotein is a member of a large poxvirus family of secreted proteins that bind CC-chemokines and inhibit their chemoattractant activities in vitro. To determine the biological role of M-T1 in contributing to myxoma virus virulence, we constructed a recombinant M-T1-deletion mutant virus that was defective in M-T1 expression. Here, we demonstrate that M-T1 is expressed continuously during the course of myxoma virus infection as a highly stable 43-kDa glycoprotein and is dispensable for virus replication in vitro. Deletion of M-T1 had no significant effects on disease progression or in the overall mortality rate of infected European rabbits but heightened the localized cellular inflammation in primary tissue sites during the initial 2 to 3 days of infection. In the absence of M-T1 expression, deep dermal tissues surrounding the primary site of virus inoculation showed a dramatic increase in infiltrating leukocytes, particularly monocytes/macrophages, but these phagocytes remained relatively ineffective at clearing virus infection, likely due to the concerted properties of other secreted myxoma virus proteins. We conclude that M-T1 inhibits the chemotactic signals required for the influx of monocytes/macrophages during the acute-phase response of myxoma virus infection in vivo, as predicted by its ability to bind and inhibit CC-chemokines in vitro. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1006/viro.1999.9617 |