Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil

We investigated interactions between plant roots, protozoa and nematodes after addition of patches containing inorganic or organic nitrogen in order to determine whether root proliferation could explain the capture of N by the plant from the patch. Decomposition of a 15N/13C, dual-labelled, organic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 1998-07, Vol.139 (3), p.479-494
Hauptverfasser: HODGE, A., STEWART, J., ROBINSON, D., GRIFFITHS, B. S., FITTER, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated interactions between plant roots, protozoa and nematodes after addition of patches containing inorganic or organic nitrogen in order to determine whether root proliferation could explain the capture of N by the plant from the patch. Decomposition of a 15N/13C, dual-labelled, organic patch in the absence of plant roots was also examined. In the decomposing patch the amounts of 13C and 15N remaining co-varied and both declined with time. Nematode numbers increased. However, protozoan biomass and inorganic N (NO3− and NH4+) availability did not significantly alter as decomposition of the patch progressed. Addition of inorganic N patches, as NH4NO3 solutions, to the first lateral to emerge from the main seminal root axis of Lolium perenne L. seedlings had no effect on root growth compared with controls 16 d after addition. Protozoan biomass increased. Furthermore, log protozoan biomass and NO3− concentrations of the growth medium were significantly (P
ISSN:0028-646X
1469-8137
DOI:10.1046/j.1469-8137.1998.00216.x