A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos

S. cerevisiae Ipl1, Drosophila Aurora, and the mammalian centrosomal protein IAK-1 define a new subfamily of serine/threonine kinases that regulate chromosome segregation and mitotic spindle dynamics. Mutations in ipl1 and aurora result in the generation of severely aneuploid cells and, in the case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 1998-11, Vol.125 (22), p.4391-4402
Hauptverfasser: Schumacher, J M, Ashcroft, N, Donovan, P J, Golden, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:S. cerevisiae Ipl1, Drosophila Aurora, and the mammalian centrosomal protein IAK-1 define a new subfamily of serine/threonine kinases that regulate chromosome segregation and mitotic spindle dynamics. Mutations in ipl1 and aurora result in the generation of severely aneuploid cells and, in the case of aurora, monopolar spindles arising from a failure in centrosome separation. Here we show that a related, essential protein from C. elegans, AIR-1 (Aurora/Ipl1 related), is localized to mitotic centrosomes. Disruption of AIR-1 protein expression in C. elegans embryos results in severe aneuploidy and embryonic lethality. Unlike aurora mutants, this aneuploidy does not arise from a failure in centrosome separation. Bipolar spindles are formed in the absence of AIR-1, but they appear to be disorganized and are nucleated by abnormal-looking centrosomes. In addition to its requirement during mitosis, AIR-1 may regulate microtubule-based developmental processes as well. Our data suggests AIR-1 plays a role in P-granule segregation and the association of the germline factor PIE-1 with centrosomes.
ISSN:0950-1991
1477-9129
DOI:10.1242/dev.125.22.4391