Characterization and determination of brewer's solid wastes composition

Agro‐industrial wastes are produced in large quantities around the world from the processing and manufacturing of food and beverages. The disposal of these wastes into the environment leads to damage to ecosystems owing to their composition rich in organic matter. In this context it may be noted tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Institute of Brewing 2015-07, Vol.121 (3), p.400-404
Hauptverfasser: Mathias, Thiago Rocha dos Santos, Alexandre, Verônica Marinho Fontes, Cammarota, Magali Christe, de Mello, Pedro Paulo Moretzsohn, Sérvulo, Eliana Flávia Camporese
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Agro‐industrial wastes are produced in large quantities around the world from the processing and manufacturing of food and beverages. The disposal of these wastes into the environment leads to damage to ecosystems owing to their composition rich in organic matter. In this context it may be noted that the brewing industry, whose production process includes processing steps and fermentation of vegetable raw materials such as barley and/or other grains used as adjuncts and hops, generates various byproducts. The worldwide consumption of these beverages and the current model of breweries, which includes production on a large scale, lead to the generation of large amounts of brewery waste, namely spent grain, hot trub and residual yeast. Owing to its composition, these residues exhibit significant potential for application in bioprocess technologies. In this study the three residues mentioned had their composition determined as a function of moisture, ash, total organic carbon (TOC), total and soluble nitrogen, reducing sugar and soluble free amino nitrogen. Moreover, the residues were characterized for total acidity, pH and chemical oxygen demand (COD) of total and soluble fractions. The three residues evaluated had high moisture content (>80%) and high organic matter content (TOC and COD, ~50% and >1000 mg/g, respectively), which can highlights the significant protein fraction (almost 50% for hot trub and residual yeast), suggesting the possibility of using these wastes for recovery. Copyright © 2015 The Institute of Brewing & Distilling
ISSN:0046-9750
2050-0416
DOI:10.1002/jib.229