Multi-step numerical methods derived using discrete Lagrangian integrators

On the basis of the variational integrators theory, we initially examine the possibility of deriving multi-step numerical methods. Then, we propose an integration technique that approximates the action integral within one time interval by using appropriate expressions for the relevant configurations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2013-01, Vol.410 (1), p.12119-4
Hauptverfasser: Vlachos, D S, Kosmas, O T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On the basis of the variational integrators theory, we initially examine the possibility of deriving multi-step numerical methods. Then, we propose an integration technique that approximates the action integral within one time interval by using appropriate expressions for the relevant configurations and velocities. These approximations depend on a specific number of known configurations defined at previous time nodes. Multi-step numerical methods can finally be deduced, by defining, as usually, the Lagrange function as a weighted sum over the discrete Lagrangians corresponding to each of the curve segments and using the discrete Euler-Lagrange equations.
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/410/1/012119