Experimental Study of the Ignition Process and Combustion of Biodiesel-Water-Air Rapid Mixing Derived from Waste Cooking Oil, Crude Palm Oil and Jatropha Oil in Burner Combustion
The prospects of fossil oil resources and strengthen of future emission regulation have raised keen attention together with the issue of renewable alternative fuel. As one of the different solutions to these problems, emulsion fuel technology in biodiesel has received close attention because it may...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2015-07, Vol.773-774 (International Integrated Engineering Summit 2014), p.530-534 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prospects of fossil oil resources and strengthen of future emission regulation have raised keen attention together with the issue of renewable alternative fuel. As one of the different solutions to these problems, emulsion fuel technology in biodiesel has received close attention because it may provide better combustion efficiency and would contribute to a reduction in emissions, such as nitrogen oxides (NOx) or particulate matter (PM).The solution of this issue is by using Biodiesel fuel as an alternative fuel from waste cooking oil (WCO), crude palm oil (CPO) and Jatropha Oil (JPO). In addition, Waste cooking oil is one of the most economical options for producing biodiesel due to the biodegradable properties and preserves energy. This study focuses on the observation of ignition and combustion characteristics of biodiesel-water-air rapid mixing of biodegradable fuel using internally rapid mixing injector in burner combustion. In this research, the relation of mixture formation, burning process and flame development of biodiesel were investigated in detail. The parameters include equivalent ratio, water content and mixture formation are studied. The flame development is analysed in term of flame longest for testing. The result shows that equivalent ratio and water content affect the combustion. Increasingly of water content will reduce the flame length and increase the probability of misfire. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.773-774.530 |