Covering a rectangular chessboard with staircase walks
Let C(n,m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n,m) is a rook’s path on C(n,m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n,m).
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2015-12, Vol.338 (12), p.2229-2233 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let C(n,m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n,m) is a rook’s path on C(n,m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n,m). |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2015.05.027 |