Covering a rectangular chessboard with staircase walks

Let C(n,m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n,m) is a rook’s path on C(n,m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n,m).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2015-12, Vol.338 (12), p.2229-2233
1. Verfasser: Kerimov, Azer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let C(n,m) be a n×m chessboard. An ascending (respectively descending) staircase walk on C(n,m) is a rook’s path on C(n,m) that in every step goes either right or up (respectively right or down). We determine the minimal number of ascending and descending staircase walks covering C(n,m).
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2015.05.027