Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L. (1753) individually and in binary mixtures
Antihypertensive pharmaceuticals, including the beta-blockers, are one of the most detected therapeutic classes in the environment. The ecotoxicity of propranolol hydrochloride and losartan potassium was evaluated, both individually and combined in a binary mixture, by using the Lemna minor growth i...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology (London) 2015-07, Vol.24 (5), p.1112-1123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Antihypertensive pharmaceuticals, including the beta-blockers, are one of the most detected therapeutic classes in the environment. The ecotoxicity of propranolol hydrochloride and losartan potassium was evaluated, both individually and combined in a binary mixture, by using the Lemna minor growth inhibition test. The endpoints evaluated in the single-pharmaceutical tests were frond number, total frond area and fresh weight. For the evaluation of the mixture toxicity, the selected endpoint was frond number. Water quality criteria values (WQC) were derived for the protection of freshwater and saltwater pelagic communities regarding the effects induced by propranolol and losartan using ecotoxicological data from the literature, including our data. The risks associated with both pharmaceutical effects on non-target organisms were quantified through the measured environmental concentration (MEC)/predicted-no-effect concentration (PNEC) ratios. For propranolol, the total frond area was the most sensitive endpoint (EC₅₀ = 77.3 mg L⁻¹), while for losartan there was no statistically significant difference between the endpoints. Losartan is only slightly more toxic than propranolol. Both concentration addition and independent action models overestimated the mixture toxicity of the pharmaceuticals at all the effect concentration levels evaluated. The joint action of both pharmaceuticals showed an antagonistic interaction to L. minor. Derived WQC assumed lower values for propranolol than for losartan. The MEC/PNEC ratios showed that propranolol may pose a risk for the most sensitive aquatic species, while acceptable risks posed by losartan were estimated for most of aquatic matrices. To the authors knowledge these are the first data about losartan toxicity for L. minor. |
---|---|
ISSN: | 0963-9292 1573-3017 |
DOI: | 10.1007/s10646-015-1455-3 |