New integral representations of Whittaker functions for classical Lie groups

The present paper proposes new integral representations of g-Whittaker functions corresponding to an arbitrary semisimple Lie algebra g with the integrand expressed in terms of matrix elements of the fundamental representations of g. For the classical Lie algebras sp sub(2)l, so sub(2)l, and so sub(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematical surveys 2012-01, Vol.67 (1), p.1-92
Hauptverfasser: Gerasimov, A A, Lebedev, Dmitrii R, Oblezin, Sergei V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present paper proposes new integral representations of g-Whittaker functions corresponding to an arbitrary semisimple Lie algebra g with the integrand expressed in terms of matrix elements of the fundamental representations of g. For the classical Lie algebras sp sub(2)l, so sub(2)l, and so sub(2)l + 1 a modification of this construction is proposed, providing a direct generalization of the integral representation of gll + 1-Whittaker functions first introduced by Givental. The Givental representation has a recursive structure with respect to the rank l + 1 of the Lie algebra gll + 1, and the proposed generalization to all classical Lie algebras retains this property. It was observed elsewhere that an integral recursion operator for the gll + 2 - Whittaker function in the Givental representation coincides with a degeneration of the Baxter Q-operator for gll + 1-Toda chains. In this paper Q-operators for the affine Lie algebras so sub(2)l, so sub(2)l + 1 and a twisted form of gl sub(2)l are constructed. It is then demonstrated that the relation between integral recursion operators for the generalized Givental representations and degenerate Q-operators remains valid for all classical Lie algebras.
ISSN:0036-0279
1468-4829
DOI:10.1070/RM2012v067n01ABEH004776