Interaction between lamellar twinning and catalyst dynamics in spontaneous core-shell InGaP nanowires
Semiconductor nanowires oriented along the [211] direction usually present twins parallel to their axis. For group IV nanowires this kind of twin allows the formation of a catalyst-nanowire interface composed of two equivalent {111} facets. For III-V nanowires, however, the twin will generate two fa...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2015-08, Vol.7 (29), p.12722-12727 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconductor nanowires oriented along the [211] direction usually present twins parallel to their axis. For group IV nanowires this kind of twin allows the formation of a catalyst-nanowire interface composed of two equivalent {111} facets. For III-V nanowires, however, the twin will generate two facets with different polarities. In order to keep the orientation stable, a balance in growth rates for these different facets must be reached. We report here the observation of stable, micron-long -oriented InGaP nanowires with a spontaneous core-shell structure. We show that stacking fault formation in the crystal region corresponding to the {111}A facet termination provides a stable NW/NP interface for growth along the direction. During sample cool down, however, the catalyst migrates to a lateral {111}B facet, allowing the growth of branches perpendicular to the initial orientation. In addition to that, we show that the core-shell structure is non-concentric, most likely due to the asymmetry between the facets formed in the NW sidewall; this effect generates stress along the nanowire, which can be relieved through bending. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c5nr02747k |